高平均出力レーザーでのレーザー加工部のその場計測手法の開発

基盤理工学専攻 光工学プログラム 西川和貴 主任指導研究員:米田仁紀 教授 指導教員:中村 信行 教授

1. 背景・目的

レーザー加工では、固体状態の金属 や複合材料に高出力レーザーを CW 的 にもしくはパルス的に照射しアブレ ーションを起こさせプラズマ化させ ることが行われる。この場合、物質は 固体から液体-気体-プラズマへと遷 移するが、この遷移過程の中で Warm Dense Matter (WDM) [1]と呼ばれる高 エネルギー密度状態を通過していく。 この状態では、T=0 で築かれた固体モ デルも T=∞で作られた理想プラズマ モデルも使用できない状態となる。例 えば、温度的には1万度を超えイオン 化温度になっているものの、高密度性 のために、電子は局在化と非局在化の 間を動的に移動しながら膨張をして いくようなことが起きる。この特性が、 加熱レーザーの吸収特性を変えたり、 音速が変化することで膨張過程が変 化したりする[2]ことで、レーザー加 工のそのものの特性も変わってきて しまう。この電子状態を正確に評価す るには、固体密度程度の物質中での電 子の速度分布関数を直接観測するこ とが求められている。そこで、本研究 では、実際のレーザー加工部の金属状 態を模擬した状態で数 mm 以上の金属 も透過できる 100keV を超える硬 X 線 を用いた非弾性散乱計測手法を確立 することを目的としている。

2. 高温高密状態(warm dense matter)

レーザーを固体に照射して得られ るプラズマは放電をベースにしたプ ラズマと異なり、密度が比較的高い状 態を維持しながら、その加工部分の温 度が急激に上昇する。そのため、比較 的簡単に 10¹¹Pa 程度の圧力状態を得 ることができる。固体は高温化によっ て液化、気化、イオン化が起こる。イ オン化すると、自由電子が増加し、理 想的なプラズマに近づくと考えられ ている。言い換えれば、ある一定の温 度以上では物質による依存性が損な われるということである。その一例と して、超短パルスレーザーによって生 成されたプラズマのレーザーの吸収 率とその照射強度の関係を図1に示 した[3]。

図1では10¹⁵W/cm³(100eV 程度)[2] より高温になると、吸収率の物質依 存性がなくなり、比較的単純な温度 依存性を持ったグラフになる。この 領域では主に自由電子がその特性の 大半を占めており、理想的なプラズ マ状態であると考えられる。 一方、 10¹⁵W/cm³より低温側では吸収率の物 質依存性が強く現れている。この領 域では固体のフェルミ縮退やプラズ マの強結合性が解れ始める領域とな っている。一般にプラズマ状態では 外側の電子からイオン化し、それら が自由電子として振る舞う。自由電 子と正イオンは全電荷中性なので電 荷密度は等しく、平衡状態である。 しかし、高温高密度条件では電子が 自由電子として振る舞ったり、原子 に局在したりすることがある。この 領域を説明するには固体物理とプラ ズマ物理学の両方を考慮する必要が あるため、定量的な説明は困難であ る。この領域の物質の状態は高温高 密度状態(warm dense matter)と呼ば れ、図2のハッチングされた領域に 当たる[2]。

常温での固体金属の密度がおよそ 10⁰~10¹、温度が 300K 程度(図 2 の青 点部分)であるのに対して、レーザー 加工中の金属の密度は 10¹~10⁻¹、温度 が約 10⁴K(図 2 の赤点部分)に達する。 この変化は、図2に表されている矢印 の変化に対応しており、金属レーザー 加工はこのWDM状態を作り出している。

3. 原理

3.1 非弾性を用いたコンプトン散乱計
 測

測定方法の概略図を図1に示す。

図3 コンプトン散乱測定の概略図[4] この測定は高エネルギー光子のコ ンプトン散乱に基づいており、電子と 光子の関係は運動量とエネルギー保 存則を用いて表すことができる。

$$\hbar\omega_1 + \frac{P_1^2}{2m} + U_1 = \hbar\omega_2 + \frac{P_2^2}{2m} + U_2 \cdot (1)$$
$$\hbar k_1 + P_1 = \hbar k_2 + P_2 \cdot \cdot \cdot (2)$$

$$\hbar\omega_2 - \hbar\omega_1 + \frac{\hbar^{2}|K|^2}{2m} = -\frac{\hbar k \cdot P_1}{2m} \cdot \cdot \cdot (3)$$

ここで、mは電子質量、 ω_i 、 P_i 、 U_i 、 K_i はそれぞれプローブのX線光子エネル ギー、電子運動量、束縛電子のエネル ギー、光子波数ベクトルである。添え 字iは散乱前(i = 1)、散乱後(i = 2)で ある。Kベクトルは入射光子運動量と 散乱光子運動量の差 $(k_1 - k_2)$ である。 放射光施設を利用し、入射光子の運動 量を限定し、十分な光量を確保するこ とができる。その結果、ある決められ た方向に散乱するX線の非弾性散乱ス ペクトルを計測することで、電子の運 動量の速度分布関数を測定できるこ とになる。

この実験では、レーザー加工部、す なわち高温に加熱された状態が非照 射領域の通常の金属に囲われた状態 を模擬するように設定されていた。そ のため、観測X線のエネルギーは、100 keVを超えるものとなるが、その反面、 Fe などの原子内のすべての電子の束 縛エネルギーを無視しうる大きさに なっている。そのため、散乱X線スペ クトルは、WDM 物理で興味ある再外殻 の電子の情報だけでなく、内殻電子の 寄与も同時に存在する系でのデータ となることが普通で、この混合したス ペクトルからのWDM領域の電子の切り 出しが重要になってくる。

3.2 電子速度関数のモデル

通常固体金属内の最外殻電子の速 度分布関数は、フェルミーディラック (F-D)関数になるとされ、そのフェル ミ面の速度は等方一様球では

$$v_F = \left(\frac{\hbar}{m}\right) \left(\frac{3\pi^2 N}{V}\right)^{1/3} \cdot \cdot \cdot \cdot (4)$$

と表せる[2]。ここで、mは電子質量、 hはプランク定数を2πで割ったもので あり、N/Vは伝導電子の密度である。 一般の金属の場合、この Fermi 面の速 度は 5eV 程度になる。

ー方、十分にイオン化が進行し、電子 が自由電子となった場合には、マクス ウェル-ボルツマン(M-B)分布に移行 することが考えられる。この速度分布 関数は以下のようになる。[2]

 $f(v)dv_xdv_ydv_z =$

$$\left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left\{-\frac{m(v_x^2 + v_y^2 + v_z^2)}{2kT}\right\} dv_x dv_y dv_z$$
• (5)

ここで、*dv_xdv_ydv_z*は各方向の速度 差、*kT*は温度である。レーザー加工な どの照射強度では、このプラズマ温度 は比較的低温で1eV前後になっている ことが多い。したがって、フェルミ面 から自由電子に移行すると速度が低 下し、それが1つのプラズマ移行の証 拠にもなる。

図4では、単純にF-D分布関数であっ た一部がM-B分布に移行した場合のコ ンプトン散乱スペクトルの計算例を 示している。このように移行前後で中 心付近に差が生じてくると予想がで きている。

図4計算されたフェルミ分布とボル ツマン分布(緑は差分曲線)

4. 実験装置

X線観測非弾性散乱の計測システムの概略図を図4に示す。

図4 X線観測非弾性散乱の計測システムの概略図

実験ではQスイッチYAGレーザーを利 用することでターゲット上に高エネ ルギー密度状態の生成を行い、生成し た高エネルギー密度状態に対してX線 プローブの照射を行うことでコンプ トン散乱の計測を行った。また、ステ ンレステープの振動を計測するため に、バックライトでステンレステープ の影を画面上で記録して高さを計測 する系を構築した。

5. 散乱スペクトル評価と考察

図5は、実験データから加工部(hot) と非加工部(cold)のデータを、総散 乱量を一定になるように規格化し、そ の差分をとった例である。

図5中の赤線が加工部、青線が非照 射部のコンプトンスペクトルであり、 赤点がその差分量を各エネルギーチ ャンネルで示している。この差分スペ クトルは、前述したように鉄原子の内 殻電子を含めすべての電子の散乱が 見えているため、変化量としてはわず かなものとなる。

図5 深度 a~e(a=0µm、b=200µm、c=400 µm、d=600µm、e=800µm)での加工中金属 (赤線)とバルク状態の金属(青線)から 検出された信号強度の比較(赤ドットは 差分値)

次に、得られたピーク付近の差分デー タを、図4のような形で変位が起きる ものとして下に凸の2乗関数と上に凸 のガウス関数を組み合わせたもので、 フィッティングを行い、M-B移行した 電子の量とその速度広がりを抽出し た。図6にフィッティングした例を示 す。

図 6 深さ a (0 µ m) でのフィッティング 結果

また、フィッティング結果の振幅パ ラメータは図7のようになった。

図7 振幅パラメータの変化 一方、レーザー照射にともない、アブ レーションにより加工部から物質が 膨張し、原子密度が低下する。この原 子密度は、コンプトン散乱スペクトル の総量に比例するので、コンプトン散 乱観測位置での原子密度は、一様な物 体であると仮定して図8のように見積 もることができた。

図8 計測位置での原子密度の見積もり 図7では、加工表面から0~800µm の範囲でのM-B移行をした電子の割合 (全電子数に対する移行電子の割合) 深さの関数で表したものである。加工 位置が深くなるにつれ、金属内電子状 態から自由電子となる成分が連続的 に低下していることが分かる。一方、 図8では表面付近になるにつれて連 続的に原子密度が低下するが、図7の ように表面付近で急激に変化はしな い。また、自由電子を仮定した平均速 度は、今回の照射強度では、散乱 X 線 分光システムの分解能程度になって いて、優位ある空間位置の差は検出す ることができなかった。

6. まとめ

本研究ではレーザー加工などの WDM 状態でのX線散乱スペクトルを用いた その場計測解析手法を提案し、実験で 得られたスペクトルデータにより、フ ェルミーディラック分布からマクス ウェル-ボルツマン(M-B)分布へ移行 した成分の空間変化を導き出すこと に成功した。

7. 参考文献

- [1] Medvedev, N., Ziaja, B. Multistep transition of diamond to warm dense matter state revealed by femtosecond X-ray diffraction. Sci Rep 8, 5284 (2018).
- [2] Warm Dence Matter 物性 米田仁 紀 プラズマ・核融合誌(2005)
- [3] D.F. Price et al., Phys. Rev. Lett., 75-2, 252 (1995)
- [4] Compton Scattering Measurement to Detect Momentum Distribution of Electrons in Warm Dense Matter Hitoki YONEDA and Shigeaki NISHIO Plasma and Fusion Rsearch: Letters Volume 12, 130146 (2017)