# W 型屈折率分布 Tm ファイバーを用いた モード同期レーザーの開発

戸倉川研究室 佐藤匠

# 1 はじめに

近年、高エネルギーな 100 fs 以下の超短パル ス光を得る方法として、散逸ソリトンモード同 期や全正常分散 (ANDi) ファイバーレーザー が大きな注目を集めている。これはソリトンや ストレッチパルスなどの状態に比べ、よりファ イバー中、特に利得ファイバー中での非線形光 学効果の抑制、制御が可能であり、より高いエ ネルギーのパルスが得やすい[1]。しかし、一般 的に用いられるシリカファイバーは波長 2µm 帯において異常分散を示すため、正常分散を有 する利得ファイバーを用いたモード同期レー ザーの開発は困難であった。我々はシリカファ イバーの代わりにフッ化物ファイバーを用い ることによって波長 2 µm 帯で初めての ANDi レーザーを実現することに成功している[2]。 しかし ZBLAN ファイバーは低機械強度、潮 解性といった扱いづらい点も有している。そこ で本研究では ZBLAN ファイバーの代わりに、 波長 2 µm 帯において正常分散を示す W 型屈 折率分布による分散制御シリカガラスファイ バー[3]を使用した、非線形偏波回転によるソ リトンモード同期レーザーの開発を行った。

## 2 原理

## 2.1 波長分散

波長分散とは、光波の位相速度が波長に依存 することをいう。光パルスが分散の影響を受け るとパルス形状の変化、パルスの広がりを起こ してしまう。 光ファイバーの分散性を説明するために、 モードの伝搬定数 βを中心周波数  $ω_0$ のまわり でテイラー展開すると次式のようになる [4]。

$$\beta(\omega) = n(\omega)\frac{\omega}{c}$$
  
=  $\beta_0 + \beta_1(\omega - \omega_0)$   
+  $\frac{1}{2}\beta_2(\omega - \omega_0)^2$  (1)  
+  $\frac{1}{6}\beta_3(\omega - \omega_0)^3 + \cdots$ 

ただし $m = 0, 1, 2, \dots$ として、

$$\beta_m = \left[\frac{d^m \beta}{d\omega^m}\right]_{\omega=\omega_0} \tag{2}$$

である。パラメータ $\beta_1$ 、 $\beta_2$ は屈折率nとその 導関数に関連付けられる[4]。

$$\beta_1 = \frac{1}{c} \left[ n + \omega \frac{dn}{d\omega} \right] = \frac{n_g}{c} = \frac{1}{v_g} \qquad (3)$$

$$\beta_2 = \frac{1}{c} \left[ 2\frac{dn}{d\omega} + \omega \frac{d^2n}{d\omega^2} \right]$$

$$\simeq \frac{\omega}{c} \frac{d^2n}{d\omega^2} \simeq \frac{\lambda^3}{2\pi c^2} \frac{d^2n}{d\lambda^2}$$
(4)

ここで  $n_g$  は群屈折率、 $v_g$  は群速度である。 $\beta_1$  は群速度の逆数になっており、単位長当たりの 伝搬遅延時間を表すため、群遅延時間と呼ばれ る。 $\beta_2$  はパルスの広がりを決めるもので、群 速度分散 (GVD) である。

光ファイバーの分散を表すために一般に用い られるのは、分散パラメータ D ps/nm/km で あり、群速度分散  $\beta_2 \ge D$  の間には次の関係が ある [4]。

$$D = \frac{d\beta_1}{d\lambda} = -\frac{2\pi c}{\lambda^2}\beta_2$$

$$\simeq -\frac{\lambda}{c}\frac{d^2n(\omega)}{d\lambda^2}$$
(5)



図1 シリカガラスにおける屈折率の波長依存性[4]



# 図2シリカガラスの材料分散による群速度分散 β2 の波長依存性 [4]

図 1、2 にシリカガラスの屈折率 n、群屈折 率  $n_g$ 、群速度分散  $\beta_2$  の波長  $\lambda$  に対する依存性 を示す。図 2 の  $\lambda_D$  において分散が 0 になって いる。シリカガラスでは  $\lambda_D = 1.27 \mu m$  付近で あり、ゼロ分散波長と呼ばれる。このように媒 質の屈折率から導かれる分散は材料分散と呼ば れる。ただし、 $\lambda = \lambda_D$  で分散がなくなるわけ ではなく、(1) 式で 3 次の項を考慮する必要が ある。この高次の分散により超短パルス光は歪 んでしまうが、高次の分散を考慮しなければい けないのは、パルス幅が狭い場合である。

#### 212 導波路分散

光ファイバーは誘電性のある導波路のため、 モード屈折率の有効値が物質の屈折率 n(ω) よ



図3シリカ系光ファイバーの全分散波長依存性[4]

り小さくなるため、光ファイバーの全分散は材 料分散に加えて導波路からの影響、導波路分散 も付加する必要がある。導波路分散はコアの半 径や比屈折率差 Δ などの値によって決まる。 図 3 に全分散の波長依存性を示す。

この図からわかるように、導波路分散の影響 で全分散は材料分散よりも長波長側にシフトし ている。これによりゼロ分散波長は、典型的な 光ファイバーで $\lambda_D = 1.31 \, \mu m$ となる。

#### 213 群速度分散

一般的な光ファイバーにおいては、群速度分 散 $\beta_2$ または分散パラメータ D の符号によっ て分散の効果は異なる。 $\beta_2 > 0$ を満たす場合、 波長  $\lambda$  は  $\lambda < \lambda_D$  であり、正常分散となる。正 常分散では、光パルスの低周波数 (長波長) 成 分は高周波数 (短波長) 成分よりも速く伝わる。 また  $\beta_2 < 0$ を満たす場合、波長  $\lambda$  は  $\lambda > \lambda_D$ であり、異常分散となる。異常分散では、光パ ルスの低周波数成分は高周波数成分よりも遅く 伝わる。

#### 2.2 W型屈折率分布による分散制御

本研究で使用した Tm ファイバーの屈折率 分布を図4に、分散曲線を図5に示す。一般的 なステップインデックスに比べ、コアサイドに 低屈折率のディップが存在している。ここへコ アを伝搬する光が染み出すことで、実効屈折率 が低下する。この際長波長の光ほど染み出しが





図 5 W 型屈折率分布をもつファイバーの 分散曲線[3]

大きく、より実効屈折率が低下する。これによ り正常分散効果が得られる。シリカガラスファ イバーにおいても正常分散を得ることは可能だ が、コア径を 3 µm 程度にしなければならなく、 これは高エネルギー動作には向かない。しかし この Tm ファイバーではコア径が約 6 µm と倍 程度の大きさで正常分散が可能となっている。 分散値は線引き後の径に強く依存し、本研究で は OD 値(クラッド径)が 145 µm のものを使 用した。また ZBLAN ファイバーとは異なり シリカガラスファイバーであるため、機械強度 が高く、融着が容易で全ファイバー化も可能で あると考えられる。

#### 2.3 非線形偏波回転

パルスが光ファイバー中を伝搬すると、自己 位相変調と相互位相変調により偏光成分の直交



図6 非線形偏波回転によるモード同期概念図

する2成分に位相の変化が生じる。この偏光状 態の強度依存性を利用してモード同期を得るの が、非線形偏波回転である。図6に非線形偏波 回転を用いてモード同期を得る概念図を示す。 光ファイバーを伝搬したパルス光は自己位相 変調により、光強度の強いパルス成分と光強度 の弱い CW 成分の偏光回転量が異なった状態 で出射される。このパルス光を波長板と PBS を透過させる。このとき波長板を調整すること で、PBS において CW 成分にパルス成分より も大きな損失を与える。これにより疑似的な高 速可飽和吸収体効果が得られる。したがって、 CW 成分の発振は抑制されパルス成分でのみ 発振が起こりモード同期動作を得ることがで きる。

# 3 非線形偏波回転によるモード同期

#### 3.1 実験構成

実験構成を図 7 に示す。前述の Tm ファイ バーを波長 1.55 μm の Er:Yb fiber MOPA で WDM を通し後方励起している。より大きな 非線形光学効果を得るために Tm ファイバーの 前方に SMF28 を 10 m 融着した。ファイバー



図7 非線形偏波回転モード同期実験図

部両端にはアングル研磨の SMF28 を融着し寄 生発振を抑制している。偏光依存性アイソレー タを入れることによって、反時計回りのリング 共振器とし、出力はアイソレータ中の PBS か ら取り出される。上述の共振器構成のもと、波 長板を調整することによって非線形偏波回転に よるモード同期動作を試みた。

#### 3.2 実験結果

励起パワーを上げ波長板を調整したところ、 平均出力が 37.5 mW 時にマルチパルス状態の モード同期が得られた。その状態で励起パワー を下げたところ、平均出力が 12.3 mW 時にシ ングルパルスでのモード同期動作を得ることに 成功した。モード同期動作時のパルストレイン を図 8、9 に示す。 シングルパルス時の繰り返 し数は~11.9 MHz、パルスエネルギーは~1 nJ と推定される図 10 にスペクトルを示す。中心 波長は 1953 nm、スペクトル幅は~5 nm、スペ クトル幅から推定されるパルス幅は、Sech<sup>2</sup> 型



図 8 パルストレイン (20 µs/div)



図 9 パルストレイン (1 ms/div)



図10 シングルパルス動作時のスペクトル

を仮定した場合~800 fs と考えられる。またス ペクトル中にソリトンモード同期の特徴である ケリーサイドバンドが確認できた。これによっ て短パルス化が制限されていると考えられ、共 振器長と分散値を減らすことにより、さらなる 短パルス動作が得られると考えられる。

# 4 まとめ

W型屈折率分布分散制御 Tm ファイバーを 用いたモード同期レーザーの開発に成功した。 今後は SMF28 の長さを減らし 0 分散に近づけ ることによって、スペクトル幅の広帯域化、短 パルス化を目指す予定である。

#### 参考文献

- Andy Chong, et al, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ", Opt, Lett 2408-2411 32, 2007
- [2] H. Sagara, A. Suzuki, and M. Tokurakawa, "Two micron All-normal-dispersion NPR mode-locked Tm:ZBLAN fiber laser," ASSL2018 Boston, USA, ATu2A.25
- [3] Yuhao Chen, et al, "Normal dispersion thulium fiber for ultrafast near-2µm fiber laser," CLEO 2018 © OSA 2018
- [4] 住村和彦、西浦匡則著、"解説ファイバーレー ザーー基礎編ー"、オプトロニクス社