リチウム原子冷却のための 半導体レーザー励起Nd: YVO₄レーザーの開発

電気通信大学 新世代レーザー研究センター 向山研究室 B4 三明祐大

1. 目的

本研究室の目標は、極低温フェルミ原子 Li におけ るP波超流動状態の実現である。Li原子の冷却の為 には、Li原子の共鳴光である 671nm の波長かつ高パ ワーで安定なレーザー光源が必要である。現在、我々 は Li 原子冷却の為に、リング共振器色素レーザーに より波長 671nm、強度 300~450mW の光を得てい る。しかし、色素は使用していると劣化してしまうた め定期的な色素交換の必要がある。そのため、交換の 度にレーザー媒質である色素の条件が変化し発振条件 が変わってしまい、結果実験系のセットアップを調整 し直さなければならないという問題が生じてしまう。 本研究の目的は、これらの問題を解決するために、常 に同じ条件での使用が可能で、強度が色素レーザーと 同等もしくはそれ以上のレーザー光を得る光源を開発 することを目標とした。これらの条件を満たす光源と して我々は、Nd: YVO₄を半導体レーザーで励起し 1342nmの単一周波数のレーザー光を発生させ非線形 光学結晶(LBO 結晶)を用いて第二高調波を発生さ せることで波長 671nm のレーザー光を得る試み[1]を 行った。

2. 原理

ここでは、節 2.1~節 2.3 において DPSS レーザー [2]の原理を、節 2.4~2.5 では第二高調波発生につい て述べたいと思う。

2.1 DPSS レーザー

DPSS レーザーとは"Diode-Pumped Solid-State laser"の略で「半導体励起固体レーザー」とも呼ばれる。 図 2.1 の概略図ようにレーザー媒質を、LD(Leser Diode)を用いて励起し外部に共振器組むことで、レー ザー発振をさせるものである。

図 2.1DPSS レーザー概略図

Nd: YVO₄ DPSS レーザーの動作原理は、図 2.1 の様 に共振器中の結晶(Nd: YVO₄)に対し波長 808nm の Pump 光を照射することで反転分布が形成され、波長 1342nm の光が増幅されることによりレーザー発振を 可能としている。

2.2 DPSS レーザーにおける熱的効果

光共振器が安定に共振する為には、ビームの広がり によって、共振器中でエネルギーの一部がミラーから はずれ共振せず損失してしまう、回折損失を低く保つ 必要がある。そのため、共振器を組む上でしばしば凹 面鏡が用いられる。

本実験での DPSS レーザーの共振器においては、 熱レンズ効果を用いて安定条件を満たしている。熱レ ンズ効果とは、Pump 光を結晶が吸収することによっ て発生する熱によって結晶中に温度勾配が生じ光の屈 折率にも勾配が生じることにより、結晶がレンズのよ うに振る舞う効果である。

2.3 シングルモード発振

共振器とレーザー媒質のみで DPSS レーザーを構 成すると、通常は共振器に共鳴する複数の周波数モー ドで同時に発振を起こすマルチモード発振が起きる。 マルチモード発振は複数の周波数成分を含むことから 原子の冷却用光源としては使用できない。よって、シ ングルモード発振であることが必要不可欠である。シ ングルモード発振であることが必要不可欠である。シ ングルモード発振は、各モード間の利得に差を持たせ 利得の大きなモードが発振することで実現している。 周波数モードにおけるシングルモード発振はエタロン が用いられることが多い。エタロンは薄いガラス板で 構成され、FSR が広いファブリペロー共振器として 機能する。そのため、図 2.3 のようにエタロンとレー ザー媒質の利得によって各周波数モードの利得の差を 作りシングルモード発振を可能とする。

図 2.2 ゲインカーブ

2.4 第二高調波の発生原理

ここでは、第二高調波の発生原理を述べたいと思 う。レーザー光の様に強い光を結晶に対し入射した事 によって生じる様々な現象・効果を非線形光学効果と 呼ぶ。非線形光学効果が起きている時の、結晶内に生 じる分極 P は電場 E の高次の項に比例する成分を持 ち、分極の光電場に対する依存性を記述する事がで き、ε₀は真空の誘電率とすると、

 $P = P(0) + \varepsilon_0(\chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \cdots) \quad (2.2)$ と表す事ができる。

この時P(0)は静的な分極 $\chi^{(1)}$ 、 $\chi^{(2)}$ 、 $\chi^{(3)}$ をそれぞれ 1次・2次・3次の電気感受率と呼ぶ、第二高調波の 発生において重要となるのは二次の項であり、

 $P(2) = \varepsilon_0 \chi^{(2)} E^2$ (2.3)入射光の電場 E が角周波数ωからなるとすると、 $E(t) = E_{(\omega)} \cos(\omega t) \sin(\omega t) \sin(\omega t) \cos(\omega t) \cos(\omega$ 代入すると、

 $P(2) = \varepsilon_0 \chi^{(2)} E_\omega^2 \cos^2 \omega$ $= \frac{1}{2} \varepsilon_0 \chi^{(2)} E_{\omega}^2 (1 + \cos 2\omega t) \quad (2.4)$ となる。このことから、 $\chi^{(2)} \neq 0$ ならば入射電場の2 倍の周波数を持つ電場が発生することがわかり、その 振幅が入射光の光電場の2乗に比例することがわか る。本研究では第二高調波を発生させる非線形光学結 晶として LBO 結晶を選択した。

2.5 外部共振器を用いた第二高調波発生及びロック

非線形光学結晶に対し十分な強度の基本波を直接入 射することで、第二高調波を得ることができるが、本 研究では図 2.3 の様に外部共振器中に非線形光学結晶 を配置することで、非線形光学結晶に入射するレーザ ー光を共振器で増幅し光強度を高め、変換効率を高め

ることで高出力の第二高調波を発生させる試みを行っ た。

図 2.3 外部共振器概略図

また、レーザー光を共振器で増幅するためには共振 器長をレーザーが共鳴する条件に常に保持しておく必 要がある、この事をロックするという。本研究では、 PDH 法 (Pound-Drever-Hall 法) [3]と呼ばれる手法 を用いて、共振器のロックを行った。

3. 実験

ここでは、節 3.1~3.2 では DPSS レーザーの作製に ついて、節 3.3~3.4 では第二高調波発生の実験につい て述べたいと思う。

3.1 DPSS レーザーの作製

実際に作製した DPSS レーザーの概略図を図 3.1

(図中の結晶はNd: YVO₄を表す) に示す。Nd: YVO₄に Pump 光を集光するためのレンズの焦点距離及び、共 振器出射部分のミラーの反射率は最適化を行い選択し た。また、DPSS レーザーをハイパワーで出力させる 為には DPSS の発振を1方向に限定しなくてはなら ない。そのために、本研究では、出力されたレーザー 光の一部をアイソレーターを用いて共振器に戻すとい う方法を用いることにより1方向発振が可能とした。

図 3.1 DPSS レーザーの概略図

なお、DPSS レーザーで使用するNd: YVO₄にはハイ パワーの Pump 光が当たるため、温調をしない場合 熱暴走を起こし、結晶が割れてしまう。そこで、図 3.2 のような銅製の結晶ホルダーを作成しそのホルダ ーをペルチェ素子を用いて温調することで結晶を間接 的に 25℃に温調した。また、Pump 光を出力する LD もハイパワーのレーザーを出力するため、高温になる ので図 3.3 のように水冷装置によって冷却している。

図 3.2 結晶ホルダー (Nd: YVO₄)

図 3.3 LD の水冷

3.2 DPSS レーザーの

シングルモード発振及び出力の観測

Nd: YVO4を用いた DPSS レーザーにおいて周波数モ ードでのシングルモード発振をさせる為には、共振器 内にエタロンを入れることが求められるが、本実験に おいては共振器内にエタロンを入れずに、周波数モー ドにおけるシングルモード発振が可能であった。レー ザー外部に配置したファブリペロー干渉計で調べた結 果を図 3.4 に表す。使用したファブリーペロー干渉計 の FSR が 1.5GHz のものを使用した。青いラインは ファブリペロー干渉計に共鳴した信号であり、赤いラ インは PZT の印加電圧である。6 つみえる大きなピ ークがファブリペロー干渉計の共鳴である。この結果 から、DPSS レーザーがシングルモード発振している 事が観測できた。

図 3.4 シングルモード発振スペクトル

シングルモードでの出力パワーは図 3.5 に示す。図 3.5 の横軸は Pump 光の出力、縦軸が波長 1342nm の出力を表している。これは、アライメントを最適化 した状態で図 3.1 中の出力の所にパワーメーターを置 き測定した。結果、最大 1.74W で出力が可能となっ た。

3.3 第二高調波発生のためのセットアップ

ここでは、DPSS レーザーから得た波長 1342nm のレーザー光用いて効率良く第二高調波を得るために 用いた外部共振器のセットアップと外部共振器を常に 共鳴状態に保持するためのロックについて述べたいと 思う。外部共振器及びロックの為のセットアップを図 3.6 (図中の結晶は LBO 結晶を表す) に示す。

図 3.6 外部共振器セットアップ概略図

外部共振器の中に波長 1342nm の光を入れる為のミ ラーの反射率及び、図 3.6 中 P 点に焦点が来るように する為の F=200mm のレンズの焦点距離は最適化を 行い選択した。本研究では、LBO 結晶 ($3 \times 3 \times$ 7 $mm \cdot$ 角度位相整合、タイプ I)を使用した。LBO 結晶は温度変化によって屈折率が変化してしまい、結 果位相整合に影響を及ぼしてしまう。そこで、結晶の 温度を一定に保つため図 3.7 の様に、銅製の結晶ホル ダーを作成しそのホルダーをペルチェ素子を用いて温 調することで結晶を間接的に 24°Cに温調した。

図 3.7 LBO 結晶用ホルダー

また、外部共振器のロックは図 3.6 のセットアップ で、PDH 法を用いてロックを行った。

3.4 ロックの結果及び 671nm の出力

図 3.6 のセットアップで PDH 法を用いてロックを 行った結果を図 3.8 に示す。図 3.8 において青い線は 外部共振器を FG(ファンクションジェネレーター) によって共振器長を掃引している時、PD が 671nm を検知し出力した信号を表し、赤い線はロックを行っ ている時、PD が 671nm を検知し出力した信号であ る。図 3.8 より安定して波長 671nm が出力されてい る事が確認できた。

図 3.8 共振器のロック結果

実際に外部共振器のロックを行った状態での DPSS レーザーの出力(横軸)と第二高調波の出力(縦軸) の関係は、図 3.9 のようになり、結果波長 1342nm を 1.7W 入射した時、波長 671nm を 260mw 得る事 ができた。

4. まとめと今後の展望

4.1 まとめ

本研究では、Li の共鳴光である波長 671nm を第二 高調波発生によって得るため基本波となる波長 1342nm を DPSS レーザーの作製によって単一周波 数で最大出力 1.74W 得ることに成功した。次に DPSS レーザーによって発生した波長 1342nm の光 を外部共振器によって増幅し、LBO 結晶に入射する ことで、波長 671nm のレーザー光を最大 260mW 得 ることに成功した。

4.2 今後の展望

DPSS レーザーは現状、シングルモード発振の持続時 間が 10 分弱と短く、改善の必要があるので光学素子 を光学上盤の上に配置することで、安定度上げる試み を行いたいと思う。また、波長 671nm のレーザーの 出力は最大 260mW であり、Li 原子の冷却系の実験 には 400mW の出力が必要とされる。そのため、外部 共振器のミラーの反射率の最適化を行いハイパワー化 を試みたいと思う。そして、最終的に Li 原子の共鳴 周波数への周波数安定化を行う予定である。

5. 参考文献

[1] U.Eismann, et al.OPTICS EXPRESS Vol. 21 No.7 9094 (2013) .

[2] Tso Yee Fan, et al.IEEE JOURNAL OF

QUANTUM ELECTRONIC, Vol.24, No.6 (1988).

[3]E. D. Black, et al American Jonal of Physics **69** 79(2001).