光ファイバのブリルアン利得スペクトルの測定

1. 序論

光ファイバの非線形現象の1つである、誘導ブリルアン 散乱(SBS)は、ファイバ中を伝搬する信号光の強度限界を 決めてしまう現象であり、1972年に発見されて以来、光フ ァイバ通信、ファイバ増幅器、ファイバレーザの信号光の 高強度化を進める上で大きな障害となっている。現在、 我々が開発中の、レーザガイドスターとしての応用が期待 される、波長1178nm 単一周波数フォトニックバンドギャ ップファイバ(PBGF)増幅器(図1)もその1つであり、SBS が高強度化(~50W)の大きな妨げとなっている。そのため、 光ファイバの SBS 特性を評価することが急務となってい る。ブリルアン利得スペクトル(BGS)は SBS に関する多く の情報を持っているため、光ファイバの SBS による影響を 評価する上で、その測定が重要な課題となっている。この ような背景のもと、本実験では、波長1178nmにおけるBGS 測定器を作製し、2種類の1µm帯のシングルモードファイ バ(Germanosilicate ファイバ、Phosphosilicate ファイバ)の BGS を測定し、それらの SBS 特性を評価したので報告す る。

図 1. 波長 1178nm 単一周波数 PBGF 増幅器

2. 原理

初めに SBS と BGS の原理について示す。ファイバにコ ヒーレントな光が入射すると、これがポンプ光として働く ため、密度揺らぎによる格子振動の音波(音響モード)が生 じる。それがコアの屈折率の周期的な変調、すなわち回折 格子を作り出し、この回折格子によって入射光がブラッグ 回折され、後方散乱光(ストークス光)が生じる(図 2)。散乱

電子工学科 植田研究室 山原 佳晃

時、回折格子が音速で動くことに伴い、ストークス光は、 ドップラシフトによって低周波数側にシフト(ブリルアン シフト)される。これがブリルアン散乱である。入射光パワ ーがある特定の閾値(SBS 閾値)を超えると、その大部分が ストークス光パワーに変換されてしまうため、出射光が大 きく制限されてしまう。この現象が SBS である。このとき、 ストークス光の成長は

$$\frac{dI_s}{dz} = -g_B(v)I_pI_s \quad \dots (2.1)$$

で表される。ただしgBはコア媒質のバルクのブリルアン利 得係数、Ipはポンプ光エネルギー、Isはストークス光エネ ルギーである。ここで、コア媒質のファイバ固有のブリル アン利得係数 CB(v)(以下、ブリルアン利得係数)として、フ ァイバの有効コア断面積 Aeff を用いて

$$C_B(\nu) = \frac{g_B(\nu)}{A_{eff}} \qquad \dots (2.2)$$

とおくと、(2.1)式は

$$\frac{dI_s}{dz} = -C_B(v)P_pI_s \quad \dots (2.3)$$

と書き換えられる。ただし P_p はポンプ光パワーである。こ の式からわかるようにストークス光の成長は $C_B(v)$ によっ て特徴づけられている。この $C_B(v)$ は、ブリルアンシフト ($v=v_B$)にピーク値 $C_B(v_B)$ 、線幅 Δv_B のファイバ固有のスペ クトルをもつ。これが BGS である。

図 2. ブリルアン散乱

次に BGS 測定の原理を示す(図 3)。上記の原理に従い、 ファイバにポンプ光としてコヒーレント光を入射すると、 ファイバ中で SBS によるブリルアン利得が励起される。こ のとき反対側からプローブ光を入射すると、その光はブリ ルアン利得帯域内で増幅される。そのときのプローブ光の 成長は

$$I_{probe}(L) = I_{probe}(0)e^{C_B P_p L}$$
 ...(2.4)

となる。ただし I_{probe} はプローブ光エネルギーである。ここ でブリルアン利得 $G_{B}(v)$ として

$$G_B(v) = C_B(v)P_p \qquad \dots (2.5)$$

を用いると、(2.4)式は

$$I_{probe}(L) = I_{probe}(0)e^{G_{B}L}$$
 ...(2.6)

となる。実験では、プローブ光の増加よりブリルアン利得 G_B(v)スペクトルを求め、(2.5)式を用いて BGS を導出した。

図 3. プローブ光の成長

3. 実験

3.1. 波長可変外部共振型半導体レーザ(Tunable ECLD)

後述の BGS 測定器のプローブ光源(図 9)を構成した。 この光源は BGS 測定のために、狭線幅(<< Δv_B)かつ波長 可変(連続波長掃引幅> Δv_B)であることが必要とされる。 この要求を実現させるため、外部共振器型半導体レーザ (ECLD)を用いた。

構成した ECLD(図 4)は、長さ 4mm の量子ドットゲイ ンチップ片側端面(3%AR コーティング)と回折格子によ り外部共振器を組んでおり、ピエゾに電圧をかけ、回折 格子を回転させることで波長を変えられる構造になっ ている。また、共振器長は 55mm であるため、縦モード 間隔は 2.7GHz である。ウェッジウィンドウを挿入する ことで、ビームの煽りを調節できるよう構成した。次に 構成した ECLD の特性評価を行った。

図 4. ECLD 構成図

初めに ECLD のパワー特性を測定した(図 5)。パワー 特性にはプラトーが見られた。これは電流増加によるモ ードホップと考えられ、このことから ECLD の温度不安 定性が確認された。また最大出力は電流 800mA 時で 23.6mW である。

図 5. ECLD パワー特性

次に ECLD のモードホップ特性を測定した(図 6)。ピ エゾに電圧をかけ、回折格子を回転させ、そのときの波 長を波長計(Anritsu MF9630A)により測定した。その結果、 連続波長掃引幅は 4.11GHz(0.019nm)であった。これは予 測されるブリルアン利得スペクトル幅(40MHz)よりも十 分広い掃引幅であるため、実験の要求値を満たしている と言える。

図 6. モードホップ特性

最後に ECLD の線幅を測定した。測定方法には遅延自 己ヘテロダイン測定法を用いた(図 7)。ECLD の出力光 はカプラで 2 つに分けられ、一方は 4km 遅延ファイバ へ入射し、もう一方は AOM で周波数シフト(80MHz)さ れる。その後、両光を、ビームスプリッタ(BS)を用いて 再度重ね合わせ、フォトダイオード(<16GHz)(サイエン スツルメント DSC40S)で光電変換し、ビートを RF スペ クトルアナライザ(RSA)(Anritsu MS2667C)で測定した。 また、測定器の分解能は 4km の遅延ファイバを用いた ため

$$\Delta v = \frac{c}{nL} = 51.7 \text{kHz} \quad ...(3.1)$$

である。ただし、c は光速、n はコアの屈折率、L は遅 延ファイバ長である。

得られたビート信号(図 8)を、規格化しローレンツフ イッティングを行うことで線幅を測定した(図 9)。その 結果、電流値 270~300mA 時、線幅 190kHz であった。こ れは予測されるブリルアン利得スペクトル幅よりも十 分狭い線幅であるため、実験の要求値を満たしていると 言える。

図 7. 遅延自己ヘテロダイン測定法実験図

図 8. ビート信号

図9. ローレンツフィッティング

3.2. BGS 測定

3.1 で構成した ECLD(中心波長 1178nm、線幅 190kHz) をプローブ光源(中心波長 1178nm)として用いて BGS 測 定器を作製した(図10)。ポンプ光源には本研究室で開発 されたファイバラマン増幅器(FRA)(波長 1178nm、線幅 200kHz)を使用した。ポンプ光はカプラで2つに分けら れ、一方はテストファイバ(FUT)で SBS によるブリルア ン利得を励起し、もう一方は RSA へ入射する。プロー ブ光は、FUT でブリルアン利得帯域内において増幅され た後、カプラで2つに分けられ、一方はパワーメータ (Tektronix TDS540S)へ、もう一方は RSA へ入射する。プ ローブ光の周波数を連続掃引しながら、パワーメータで ブリルアン利得による増幅光を測定し、RSA で両光のビ ート周波数からブリルアンシフトを測定することで G_B(v)スペクトルを求めた。また、各光源の直後にアイ ソレータを挿入した。これは、戻り光ならびに、もう一 方の光源からの光の入射を阻止するためであり、プロー ブ光源に関しては、ポンプ光源からの強い入射光を阻止 するために、1段目にファラデー回転子を偏光子で挟ん だ反射型アイソレータを、2段目に吸収型アイソレータ を挿入した。そして、偏光コントローラを用いて、FUT でのポンプ光とプローブ光の偏光状態を調節した。プロ ーブ光パワー0.4mWに対し、ポンプ光パワーを57.3.76.5. 107.7,139.9,205.1,252.7mWと変化させ測定した。FUT に は、コアの添加物が異なる2種類のSMF(Germanosilicate ファイバ、Phosphosilicate ファイバ)(表 1)を用いた。

図 10. BGS 測定器

Fiber	MFD[um]	Concentration	NA	Cutoff	
	(@1178nm)	[wt%]		[nm]	
Germanosilicate	6.9	6	0.14	931	
Phosphosilicate	6.7	20	0.11	1050	

表 1. FUT の特性

実験から得られた $G_B(v)$ スペクトル(図 11(a)(b))と(2.5) 式から各ポンプ光パワーに対する BGS を求めた。その 結果、BGS はポンプ光パワーに依らないことが確認され、 ここでは例としてポンプ光パワー139.9mW 時の BGS を 示した(図 12(a)(b))。そして、各ファイバの BGS のパラ メータを示した(表 2)。この結果から、BGS は Germanosilicate ファイバと Phosphosilicate ファイバで大きく異な ることがわかり、コアの添加物によって SBS 特性は大き く異なることが分かった。コアへ P を添加した場合、Ge を添加した場合と比べ、i) $C_B(v_B)$ の低下、ii) $\triangle v_B$ の増 大、iii) v_B の低下が見られた。i,iiから、コアに P を添 加することで SBS 抑制効果が期待できると判明した。ま たiiiから、ファイバ中の音速が小さくなることが判明し た。

図 11. 利得スペクトル(a)Germanosilicate(b)Phosphosilicate

図 12(a). Germanosilicate ファイバの BGS

図 12(b). Phosphosilicate ファイバの BGS

表 2. BGS パラメータ

Fiber	$C_B(v_B)$ [/Wm]	⊿v _B [MHz]	v _B [GHz]
Germanosilicate	0.28	42	14.23
Phosphosilicate	0.18	61	13.32

4. 結論

本実験では、波長 1178nm における BGS 測定器を作製し、 コアの添加物が異なる2種類の SMF(Germanosilicate ファイ バ、Phosphosilicate ファイバ)の BGS 測定を行った。その結 果、コアの添加物によって BGS は大きく異なることが確 認され、P を添加した場合、Ge を添加した場合と比べ、SBS が抑制されるということが分かった。このことから、コア の添加物により、SBS を制御することが可能であると判明 した。また、Phosphosilicate ファイバの BGS が測定された のは、本実験が初めてである。

5. 展望

今後の課題としては、1つ目は、より高精度で光源の波 長調整不要な BGS 測定を行うことである。本実験ではポ ンプ光源、プローブ光源として別々の2つの光源を用いた ため、各光源の周波数を安定化しなければならず、波長調 整に時間がかかると同時に高精度測定を難しくしていた。 これを解決するため、1つの光源の光をカプラで2つに分 け、一方をポンプ光、もう一方を変調しプローブ光とする 方法が挙げられる。この方法を用いることで高精度かつ波 長調整不要な BGS 測定を行う予定である。2つ目は、本実 験で作製した BGS 測定器を用いて、PBGFの BGS を測定 し、その SBS 特性を評価することである。