グラファイト表面上に形成された

多価イオン照射痕の STM 観察

大谷研究室 満田康晴

1 研究の背景と目的

1.1 多価イオンと固体表面

多価イオンとは高電離したイオンを意味 し、その内部には価数に依存した膨大なポ テンシャルエネルギーを保有するようにな る。このエネルギーが大きいほど、周りに ある電子を捕獲しようとする力が強くなる。 無数の電子が存在するような固体表面に多 価イオンを表面十 nm 近傍に接近させたと き、表面上の局所的な領域から多数の電子 を剥ぎ取り、イオンの高励起状態に電子を 捕獲し内殻に多くの空孔を持つ中空原子を 形成する。その後、オージェ過程などを経 て表面に到達しポテンシャルエネルギーを 付与する。このポテンシャルエネルギー付 与の効果により一価イオンとは異なった興 味深い現象が起きることが報告されている [1]。

近年、走査型トンネル顕微鏡(以下 STM) を使った観察により、多価イオンが衝突し たグラファイトなどの表面に幅数 nm の突 起上の照射痕が形成されることが明らかに なってきた。

図 1.Ar⁸⁺照射HOPG上のSTM像

図1に示したものは、Ar⁸⁺イオンを高配 向性グラファイト(以下HOPG)に照射した 際に形成された照射痕STM像である。

一方、運動エネルギー付与による照射痕 形成の研究は一価イオンを用いて盛んに研 究されており、その始まりも古い。一価イ オン入射の場合、固体内部で格子と連続的 に衝突することにより運動エネルギーを失 う。この様なエネルギー損失過程は、電子 阻止能や核阻止能と呼ばれている。衝突過 程を繰り返すことにより、格子間原子や空 孔原子による欠陥を生成する。これらが、 一価イオン照射での照射痕として多く報告 されている[2]。

1.2 これまでの研究

これまでの研究から、照射痕の幅は、価数に依存し、高さは依存しないことが確認されている[3~7]。図2の(a)は価数に対する高さの依存性を表したもので(b)は幅の価数 依存性を表したものである。一方、入射イオンの運動エネルギーに対しては、幅も高 [3~7]。図3の(a)に入射イオンの運動エネル ギーに対する照射痕の高さの関係、(b)に幅 の関係を示した。

図 2.価数に対する照射痕形状の変化

図 3.運動エネルギーに対する照射痕形状の変化

1.3 研究目的

多価イオン照射によって形成される照射 痕の形成過程を説明するいくつかのモデル が考えられているが、まだその詳細なメカ ニズムの解明にはいたっていない。そこで、 本研究では、超低速イオン入射における照 射痕形成のポテンシャルエネルギー付与の 効果を明らかにすることを研究の目的とし た。

2.実験

2.1 HOPG の特徴

本研究では、熱分解黒鉛を高温高圧化で 結晶化した HOPG を使用した。HOPG は グラファイトに比べて結晶の配向性が良く、 STM を使った実験では、標準的な試料とし て用いられる。HOPG の特徴をまとめると 層間は van der waals 結合をしている ため層間の結合力は非常に弱い。このた め、セロテープなどの粘着性のテープに より簡単に層を剥がすことが出来る。 HOPG 表面は、化学的に不活性で、大 気中でも非常に安定している。 層面を這うように自由電子が流れるた め半金属の性質を示す。

などが挙げられる。図4に HOPG の模式図 を示した。

2.2 STM

STM は導電性探針と試料表面との間に 数百 mV の電圧を加え、その間の距離が 1nm 以下になると量子力学的効果により探 針と表面との間に数 nA のトンネル電流が 流れる。このトンネル電流は両金属間の距 離に対して指数関数的に変化する。STM は、 この探針 試料間のトンネル電流を走査位 置での探針の高さの検出信号として利用し 表面上でラスタースキャンすることで、表 面像を得る装置である。このように STM は トンネル電流を検知することにより表面電 子状態の密度分布を観察することが出来る。 本研究において使用した日本電子製の走査 形プローブ顕微鏡(JSPM-4500)は、水平分 解能 0.14nm、垂直分解能 0.01nm という高 分解能を実現している[8]。

2.2 実験方法

本研究では、遠藤らによって開発された 高温超伝導EBISをイオン源として用いた [9]。Arq+(8 q 11)をHOPGに照射し、 STMを用いて照射痕形状の観察を行った。

イオン照射方法としては、高温超伝導 EBIS で多価イオンを生成しイオンビーム を引き出す。その後、分析磁石で価数選別 し、目的とする価数の多価イオンをイオン 照射室へと運搬する。そして、MCP(Micro Channel Plate)にてイオン総量を確認した のち Sample Holder をビーム位置に合わせ 照射を行った(図 5)。

図5実験装置の模式図

照射時間は、3~4 時間で照射密度が 100 ×100nmサイズに 10~20 個程度になるよ うにした。イオン照射後は、照射した Sampleを照射室隣に連結している試料観 察室に運搬してやり、STM観察を行った。 本研究では、イオン照射から観察までの全 ての作業を 10⁻⁸(Torr)以上の超高真空中で 行った。

2.3 イオン減速方法

照射イオンのエネルギーは、(引き出し電 圧)×(イオン価数)にて決まる。本研究では、 引き出し電圧を 2kVに設定しているため、 例えば、Ar⁸⁺イオンの場合、16keVもの運 動エネルギーを持つことになる。本研究で は、多価イオンの入射エネルギーを抑える ため、試料直前で減速されて照射するシス テムを用いた。減速手順としては、Front PlateをGrandに落として、Middle Plateに 連結したSample Holderに 2kV前後の電圧 を印加して減速された(図 6)。入射イオンの 運動エネルギーの決め方は、Sample Holderに電圧を印加していき、イオンカウ ントが0になったところから電圧を下げて いき、その電位差で入射イオンのエネルギ ーを決定した。

図 6Target Holder の模式図

2.4 照射痕解析方法

照射痕の解析方法は、Line Scan による ものとMathematicaによる2種類の解析方 法を用いた。Line Scan による方法は、図7 のように照射痕上のブルーの線上でスキャ ンしたときの断面図から、山の裾から裾ま での距離を幅、ピークから裾までの距離を 高さとした。同様の方法で縦方向にもスキ ャンを行い幅、高さの計算を行った。これ を約20個の照射痕に対して行い高さ、幅 の平均値を計算した。一方、Mathematica による解析方法は、図.8のように赤で囲っ た領域と青で囲った領域の Fitting data を TransForm をもちいて抜き出し、そのデー タの各列ごとの平均値を計算した。そして、 Mathematica を使いガウシアン分布にフ ィットさせてやり、そこから照射痕の半値 幅と高さを見積もった。先ほどのLine Scan 同様、約20個の照射痕に対してこの操作を 行いその平均値を出した。

図 7.照射痕の解析方

図 8.Mathematica を用いた解析方法

3 結果

3.1 照射痕の運動エネルギー依存性

今回、1keV以下の領域で形成された照射 痕の形状変化についてSTMを用いて観察 を行った。図9の(a)に入射イオンの運動エ ネルギーに対する高さの関係、(b)に運動エ ネルギーに対する幅の関係を示した。エラ ーバーは標準偏差を表している。照射痕解 析の方法としては、Mathematicaによる解 析を用いた。

図 9.運動エネルギーに対する照射痕形状の変化

これらの結果から、照射痕形成には、運動エネルギーに対する依存性はなく、ポテンシャルエネルギー付与の効果が大きいことが確認出来た。

3.2 Secondary Nanodot について

今回、入射イオンの運動エネルギーを 1keV 以下 に す る こ と で、 Primary Nanodotの近傍に、照射痕をもうひとつ確 認することが出来た。これをSecondary Nanodot と呼ぶことにした。図 10 に Ar⁸⁺160eVを照射したときに形成された Secondary Nanodotを示した。

図 10.Secondary Nanodot について

また、照射痕上で Line Scan したときの 断面図を比較したもものを図 11 に示した。 これから、Primary に比べ Secondary は約 半分くらいの大きさになっていることが確 認できる。

図 11.Secondary と Primary Nanodot の比較

3.3 ダブル Tip

図 10 のような照射痕を確認したとき、ダ ブル Tip による可能性を考えた。ダブル Tip とは、Tip 先端部分が二つに別れている状 態のことをいい、トンネル電流を 2 重に感 知してしまうため、図 12 のようなゴースト イメージになる。図 12 がゴーストイメージ であると決定した理由は以下の 3 つである。

ステップが二重になっている。 全ての照射痕に対して、同一方向にもう 一方の照射痕を持っている。

ステップ間の距離が、照射痕の Peak-Peakの距離とほぼ同じである。 これらの理由から、図12はゴーストイメ ージであると断定できる。

図 12.ダブル Tip になっているときの STM 像

3.4 ダブル Tip の可能性

図 10 の照射痕を 100×100nm サイズに 拡大したものが図 13 のようになる。

図 13.ダブル Tip の可能性

これから、二つの Primary Nanodot が 確認出来た。緑の円で括った部分が図 10 の 照射痕で、白い円の部分には、Secondary は確認することは出来なかった。これより、 Secondary がダブル Tip により観察された 可能性はないと断定できる。また、 SecondaryとPrimary Nanodotが別々の多 価イオン衝突によって形成された可能性だ が照射密度を考えると、その可能性も非常 に低いと考えられる。つまり、Secondary Nanodot は、単一多価イオン衝突により形 成されたと考えることが出来る。

3.5 Secondary Nanodot の形成過程

Secondary Nanodot の発見当初は、これ らの形成に格子間原子や空孔原子が大きく 影響していると考えた。格子間原子とは、 入射イオンや反跳粒子が表面第1層と第2 層の間に閉じ込められているものをいい (図14(a))、空孔原子とは、表面第1層の原 子が弾き飛ばされダングリングボンドが再 結合することで表面電荷状態密度が変化し たものを言う(図14(b))[10]

しかし、Ar⁸⁺ 16keV照射により形成され たSecondary Nanodot上で、図 15 のような 原子像が確認できていることと、Kinetic Sputtering Yieldが1より低いことを考え ると空孔原子による形成の可能性は低いと 考えられる。

図 15.Secondary Nanodot 上での原子分解能の達成

3.5 TRIM による計算シミュレーション

Secondary Nanodot が格子間原子により 形成されている可能性が高いと考え TRIM コードによる計算シミュレーションを行っ た(図 16)。図 16 に示した結果は Ar の一価 イオンを 160eV でグラファイトに入射した ときのものである。約20 固体内部に侵 入していることが確認できた。これは、 HOPG では約 5~6 層に相当する。つまり、 低速入射では、表面数層に入射イオンが存 在することを示している。

図 16.TRIM コードによる計算

3.6 運動エネルギーに対する Secondary の生成確率の依存性

運動エネルギーに対する Secondary Nanodot の生成確率の依存性を調べた(図 17)。これから、数百 eV 程度の低エネルギ ー入射の場合では、生成確率が 40%程度と 高く、10keV 以上の高エネルギー領域にな

ると生成確率が 10%程度に低下する傾向 があることが確認できた。

図 17.運動エネルギーに対する Secondary の生成確立

4 まとめ

Primary Nanodot の形成に関しては、運動エ ネルギーに対しての依存性は確認出来なかった。 つまり、照射痕形成においてポテンシャルエネ ルギーが重要な役割を果たしていると考えられ る。また、Primary Nanodot と Secondary Nanodot の照射痕形状を比較した結果、形成過 程に違いがあると考えられえる。超低速イオン 入射の場合、Secondary Nanodot は、入射イオ ンや反跳粒子による格子間原子により形成され ていると予想している。また、図 15 のように Secondary Nanodot 上で原子像が確認でき、 Primary Nanodot 上で確認できていないのは、 Primary Nanodot 上には空孔原子による欠陥が 含まれているためだと予想している。 参考文献

[1] A.Arnau,et,al.,Surface Science Report27(1997)113[2]L.Port,C.H.devilleneuve,et,al.,J.Vac.Sc

i.Techrol.B9(1991)1064

[3] 寺田 雅史 電気通信大学大学院 修 士論文(2005)

[4]N.Nakamura,et,al.,Nucl.Instr.Meth.B2 32(2005)261

[5] R.Minniti et al.,Phys.Scr.T92(2001)22 [6]K.Mochiji,et,al.,J.Appl.Phys.82(1997)6 037

[7]G.Hayderer,et,al.Phys.Scr.T92(2001)1 56

[8] JEOL STM 操作マニュアル

[9] 遠藤 厚身 修士論文 東京大学大学

院理学系研究科物理学専攻(2001)

[10] J.R.Hahn and H.Kang Phys.Rev.B., 60(1999)6007